Abstract

In this paper, we consider optimal scheduling algorithms for scientific workows with two typical structures, fork&join and tree, on a set of provisioned (virtual) machines under budget and deadline constraints in cloud computing. First, given a total budget B, by leveraging a bi-step dynamic programming technique, we propose optimal algorithms in pseudo-polynomial time for both workows with minimum scheduling length as a goal. Our algorithms are efficient if the total budget B is polynomially bounded by the number of jobs in respective workows, which is usually the common case in practice. Second, we consider the dual of this optimization problem to minimize the cost when the deadline of the computation D is fixed. We change this problem into the standard multiple-choice knapsack problem via a parallel transformation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.