Abstract

The synergy between visible light communication (VLC) and radio frequency (RF) networks has attracted a considerable amount of attention due to the envisioned improvements compared to conventional systems, mainly in terms of data rate and coverage. In this paper, we investigate for the first time the coexistence of VLC and RF networks, assuming that both networks are served by a common backhaul network, as well as both perfect and imperfect channel state information (CSI). In this context, we propose an optimal resource allocation scheme that maximizes the corresponding data rate, while also taking into account the fairness among the involved users. This is of paramount importance because in such heterogeneous networks, a standard rate maximization approach yields a severely degraded performance for the weaker users. In order to provide a tractable solution to the formulated problem, which is non-convex, we transform this into an equivalent convex one. Moreover, a simplified power allocation problem is solved, which provides comparable results with substantially lower complexity. Finally, extensive simulations illustrate the validity and effectiveness of the proposed analysis, and provide valuable insights on the impact of the imperfect CSI on the overall network performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.