Abstract
Let \(n\in{\mathbb N}\), and let \(Q_n\) be the unit cube \([0,1]^n\). By \(C(Q_n)\) we denote the space of continuous functions \(f:Q_n\to{\mathbb R}\) with the norm \(\|f\|_{C(Q_n)}:=\max\limits_{x\in Q_n}|f(x)|,\) by \(\Pi_1\left({\mathbb R}^n\right)\) --- the set of polynomials of \(n\) variables of degree \(\leq 1\) (or linear functions). Let \(x^{(j)},\) \(1\leq j\leq n+1,\) be the vertices of \(n\)-dimnsional nondegenerate simplex \(S\subset Q_n\). An interpolation projector \(P:C(Q_n)\to \Pi_1({\mathbb R}^n)\) corresponding to the simplex \(S\) is defined by equalities \(Pf\left(x^{(j)}\right)= f\left(x^{(j)}\right).\) The norm of \(P\) as an operator from \(C(Q_n)\) to \(C(Q_n)\) may be calculated by the formula \(\|P\|=\max\limits_{x\in ver(Q_n)} \sum\limits_{j=1}^{n+1} |\lambda_j(x)|.\) Here \(\lambda_j\) are the basic Lagrange polynomials with respect to \(S,\) \(ver(Q_n)\) is the set of vertices of \(Q_n\). Let us denote by \(\theta_n\) the minimal possible value of \(\|P\|.\) Earlier, the first author proved various relations and estimates for values \(\|P\|\) and \(\theta_n\), in particular, having geometric character. The equivalence \(\theta_n\asymp \sqrt{n}\) takes place. For example, the appropriate, according to dimension \(n\), inequalities may be written in the form \linebreak \(\frac{1}{4}\sqrt{n}\) \(<\theta_n\) \(<3\sqrt{n}.\) If the nodes of the projector \(P^*\) coincide with vertices of an arbitrary simplex with maximum possible volume, we have \(\|P^*\|\asymp\theta_n.\)When an Hadamard matrix of order \(n+1\) exists, holds \(\theta_n\leq\sqrt{n+1}.\) In the paper, we give more precise upper bounds of numbers \(\theta_n\) for \(21\leq n \leq 26\). These estimates were obtained with the application of maximum volume simplices in the cube. For constructing such simplices, we utilize maximum determinants containing the elements \(\pm 1.\) Also, we systematize and comment the best nowaday upper and low estimates of numbers \(\theta_n\) for a concrete \(n.\)
Highlights
we denote the space of continuous functions
to the simplex S is defined by equalities P f x(j
us denote by θn the minimal possible value of P
Summary
G через ver(G) обозначается совокупность его вершин. x(12). Обозначим через λj многочлен из Π1(Rn), коэффициенты которого составляют j-й столбец A−1 : λj(x) = l1jx1 + . Мы называем λj базисными многочленами Лагранжа, соответствующими S. Через σS обозначим образ S при гомотетии относительно центра тяжести с коэффициентом σ. Через α(S) обозначим минимальное σ > 0, для которого Qn принадлежит трансляту симплекса σS. Что точка x ∈ ver(Qn) является μ-веpшиной куба Qn относительно симплекса S, если для пpоектоpа P : C(Qn) → Π1 (Rn) c узлаn+1 ми в веpшинах S выполняется P = |λj(x)| и сpеди чисел λj(x) имеется pовно j=1 μ отpицательных. Если для некотоpого μ имеется μ-веpшина Qn относительно. Равенство в (6) достигается тогда и только тогда, когда существует 1-вершина Qn относительно S и симплекс ξ(S)S описан вокруг Qn
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.