Abstract

Frequency domain identification of complex systems imposes important challenges with respect to numerically reliable algorithms. This is evidenced by the use of different rational and data-dependent basis functions in the literature. The aim of this paper is to compare these different methods and to establish new connections. This leads to two new identification algorithms. The conditioning and convergence properties of the considered methods are investigated on simulated and experimental data. The results reveal interesting convergence differences between (nonlinear) least squares and instrumental variable methods. In addition, the results shed light on the conditioning associated with so-called frequency localising basis functions, vector fitting algorithms, and (bi)-orthonormal basis functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.