Abstract
In this paper we study the problem of normal families of meromorphic functions concerning shared values. Let F be a family of meromorphic functions in the plane domain D \subseteq C and n be a positive integer. Let a, b be two finite complex constants such that a \neq 0. If n \geq 3 and f + a(f')^n and g + a(g')^n share b in D for every pair of functions f, g \in F, then F is normal in D. And some examples are provided to show the result is sharp.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.