Abstract

By the maximum principle the solution of the homogeneous heat equation with homogeneous Dirichlet boundary conditions is nonnegative for positive time if the initial values are nonnegative. In recent work it has been shown that this does not hold for the standard spatially discrete and fully discrete piecewise linear finite element methods. However, for the corresponding semidiscrete and Backward Euler Lumped Mass methods, nonnegativity of initial data is preserved, provided the underlying triangulation is of Delaunay type. In this paper, we study the corresponding problems where the homogeneous Dirichlet boundary conditions are replaced by Neumann and Robin boundary conditions, and show similar results, sometimes requiring more refined technical arguments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.