Abstract

Abstract The last decades have experienced a growing enhancement of aeronautical oil free turbomachinery. The classical linear approach of rotor dynamics commonly uses stiffness and damping coefficients to model journal bearings. In the present study, a nonlinear time dependant calculation is used for the dynamic simulation of a rotor mounted with aerodynamic (gas) bearings. A comparison between the two approaches indicates that the dynamic behavior of such bearings can be nonlinear in operating ranges where the rotor eccentricity reaches high values. In that case, the linear approach may lead to incorrect results and the nonlinear approach should be performed for better rotor dynamic prediction. A numerical procedure which analyzes the dynamic behavior of simple flexible rotors taking into account the nonlinear (transient regime) characteristics of aerodynamic bearings is presented. A simple example highlights the needs of nonlinear simulations in order to predict dynamic performance in oil-free turbomachinery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.