Abstract
Projection pursuit algorithms approximate a function of p variables by a sum of nonlinear functions of linear combinations: \[ (1)\qquad f\left( {x_1 , \cdots ,x_p } \right) \doteq \sum_{i = 1}^n {g_i \left( {a_{i1} x_1 + \cdots + a_{ip} x_p } \right)} . \] We develop some approximation theory, give a necessary and sufficient condition for equality in (1), and discuss nonuniqueness of the representation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: SIAM Journal on Scientific and Statistical Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.