Abstract

A modification of the Ikebe algorithm for computing the lower half of the inverse of an (unreduced) upper Hessenberg matrix, extended to compute the entries of the superdiagonal, is considered in this paper. It enables us to compute the inverse of a quasiseparable Hessenberg matrix in O(n2) times. A new factorization expressing the inverse of a nonsingular Hessenberg matrix as a product of two suitable matrices is obtained. Because this allows us the use of back substitution for the inversion of triangular matrices, the inverse is computed with complexity O(n3). Some comparisons with results obtained using other recent inversion algorithms are also provided.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.