Abstract

We introduce a new notion of ‘neighbors’ in geometric permutations. We conjecture that the maximum number of neighbors in a set S of n pairwise disjoint convex bodies in ℝd is O(n), and we prove this conjecture for d = 2. We show that if the set of pairs of neighbors in a set S is of size N, then S admits at most O(N d-1) geometric permutations. Hence we obtain an alternative proof of a linear upper bound on the number of geometric permutations for any finite family of pairwise disjoint convex bodies in the plane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.