Abstract
ABSTRACTWe consider estimating the tail-index of a distribution under the assumption of multivariate ellipticity. Recently, a separating Hill estimator for multivariate elliptical distributions was proposed. This estimator is an affine invariant alternative to using the marginal observations in tail-index estimation and is hence unaffected by, e.g. change of units of measurement. However, the separating Hill estimator depends on the location and scatter of the elliptical distribution, which, in practice, have to be estimated. The effect of replacing the true location and scatter of the distribution by estimates has previously been only examined through simulations. In this article we show that the error caused by replacing the location and scatter of the distribution by estimates indeed is asymptotically negligible. This fact is essential for the practicality of the separating Hill estimator. In addition to providing the theoretical results, we present simulation results on the asymptotic behaviour of the estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.