Abstract

This work is concerned with the modeling of elastic wave scattering by solid or fluid-filled objects embedded in an inhomogeneous elastic background. The medium is probed by a monochromatic force and the scattered field is computed (forward problem) or observed (inverse problem) at some known receiver locations. Based on vector integral equations for elastic scattering, a general framework is developed, independent of both the problem geometry and the transmitter-receiver characteristics. This framework encompasses both forward and inverse modeling. In the forward model, a Born approximation for an inhomogeneous background is applied to obtain a closed form expression for the scattered field. In the inverse model, this approximation is also invoked to linearize for the multiparameter characteristic of the object. Finally, an iterative inversion scheme alternating forward and inverse modeling is proposed to improve the resolution and accuracy of the reconstruction algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.