Abstract

A recently developed technique for monitoring electroosmotic flow (EOF) in capillary electrophoresis by periodic photobleaching of a neutral fluorophore added to the running buffer has been further characterized and optimized and then applied to monitoring EOF during a typical capillary electrophoresis separation. The concentration of neutral fluorophore (rhodamine B) added to the running buffer for monitoring EOF has been decreased by one order of magnitude. The rate at which EOF can be measured has been increased from 0.2 to 1.0 Hz by decreasing the distance between the bleaching beam and the laser-induced fluorescence detector from 6.13 to 0.635 mm. The precision of the measured EOF ranges from 0.2 to 1.8%. Under typical experimental conditions, the dynamic range for flow measurements is 0.066 to 0.73 cm s(-1). Experimental factors affecting precision, signal-to-noise (S/N) ratio and dynamic range for EOF monitoring have been examined. This technique has been applied to measure EOF during a separation of phenolic acids with analyte detection by UV/VIS absorbance. The EOF monitoring method has been shown not to interfere with UV/VIS absorbance detection of analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.