Abstract

An approach to design a feedback controller for nonlinear systems directly from experimental data is presented. Improving over a recently proposed technique, which employs exclusively a batch of experimental data collected in a preliminary experiment, here the control law is updated and refined during real-time operation, hence enabling an on-line learning capability. The theoretical properties of the described approach, in particular closed-loop stability and tracking accuracy, are discussed. Finally, the experimental results obtained with a water tank laboratory setup are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.