Abstract

In this paper, we define k-type spacelike slant helices lying on a lightlike surface in Minkowski space E31 according to their Darboux frame for k ? {0,1,2}. We obtain the necessary and the sufficient conditions for spacelike curves with non-null and null principal normal lying on lightlike surface to be the k-type spacelike slant helices in terms of their geodesic curvature, normal curvature and geodesic torsion. Additionally, we determine their axes and show that the Darboux frame of a spacelike curve lying on a lightlike surface coincides with its Bishop frame if and only if it has zero geodesic torsion. Finally, we give some examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.