Abstract

We investigate distribution of integral well-rounded lattices in the plane, parameterizing the set of their similarity classes by solutions of the family of Pell-type Diophantine equations of the form $x^2+Dy^2=z^2$ where $D>0$ is squarefree. We apply this parameterization to the study of the greatest minimal norm and the highest signal-to-noise ratio on the set of such lattices with fixed determinant, also estimating cardinality of these sets (up to rotation and reflection) for each determinant value. This investigation extends previous work of the first author in the specific cases of integer and hexagonal lattices and is motivated by the importance of integral well-rounded lattices for discrete optimization problems. We briefly discuss an application of our results to planar lattice transmitter networks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.