Abstract

We investigate the instability and stability of some steady-states of a three-dimensional nonhomogeneous incompressible viscous flow driven by gravity in a bounded domain Ω of class C2. When the steady density is heavier with increasing height (i.e., the Rayleigh–Taylor steady-state), we show that the steady-state is linear unstable (i.e., the linear solution grows in time in H2) by constructing a (standard) energy functional and exploiting the modified variational method. Then, by introducing a new energy functional and using a careful bootstrap argument, we further show that the steady-state is nonlinear unstable in the sense of Hadamard. When the steady density is lighter with increasing height, we show, with the help of a restricted condition imposed on steady density, that the steady-state is linearly globally stable and nonlinearly asymptotically stable in the sense of Hadamard.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.