Abstract

In this paper we consider discrete-time nonlinear systems that are affected, possibly simultaneously, by parametric uncertainties and other disturbance inputs. The min–max model predictive control (MPC) methodology is employed to obtain a controller that robustly steers the state of the system towards a desired equilibrium. The aim is to provide a priori sufficient conditions for robust stability of the resulting closed-loop system using the input-to-state stability (ISS) framework. First, we show that only input-to-state practical stability can be ensured in general for closed-loop min–max MPC systems; and we provide explicit bounds on the evolution of the closed-loop system state. Then, we derive new conditions for guaranteeing ISS of min–max MPC closed-loop systems, using a dual-mode approach. An example illustrates the presented theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.