Abstract

Wireless Body Area Networks (WBANs) were designed to collect and transfer vital physiological parameters within a short distance of the human body by employing low-power, light-weight, small-sized and smart implantable or wearable sensor devices. Lately, WBANs are expected to support various types of applications with data rates from a few Kbps upto 10 Mbps and satisfy the heterogeneous requirements of both medical and consumer electronics applications. Hence, novel communication protocols that consider a unique set of constraints and demands of these networks need to be developed to provide optimum system efficiency and data transmission reliability. As the IEEE 802.15.6 Medium Access Control (MAC) protocol based on the latest WBANs standard, cannot maintain the balance between the strict energy limitation and Quality of Service (QoS) requirements of such networks, this paper focuses on developing MAC protocols to improve the performance of WBANs specifically in the saturation condition. Two IEEE802.15.6-based MAC protocols are proposed to enhance channel access for the highest user priority and the other user priorities in saturated networks. The simulation results show better network performance as well as lower energy consumption in the proposed MAC protocols compared to the IEEE 802.15.6 MAC protocol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.