Abstract

Transitions between distinct kinetic states of an ion channel are described by a Markov process. Hidden Markov models (HMM) have been successfully applied in the analysis of single ion channel recordings with a small signal-to-noise ratio. However, we have recently shown that the anti-aliasing low-pass filter misleads parameter estimation. Here, we show for the case of a Na(+) channel recording that the standard HMM do neither allow parameter estimation nor a correct identification of the gating scheme. In particular, the number of closed and open states is determined incorrectly, whereas a modified HMM considering the anti-aliasing filter (moving-average filtered HMM) is able to reproduce the characteristic properties of the time series and to perform gating scheme identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.