Abstract
In this paper, we investigate shift spaces arising from a multidimensional graph G. In particular, we investigate nonemptiness and existence of periodic points for a multidimensional shift space. We derive sufficient conditions under which these questions can be answered affirmatively. We investigate the structure of the shift space using the generating matrices. We prove that any d-dimensional shift of finite type is finite if and only if it is conjugate to a shift generated through permutation matrices. We prove that if any triangular pattern of the form a b c can be extended to a 1 x 1 square then the two dimensional shift space possesses periodic points. We introduce the notion of an E-pair for a two dimensional shift space. Using the notion of an E-pair, we derive sufficient conditions for non-emptiness of the two dimensional shift space under discussion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.