Abstract

As a proper generalization of injective modules in term of supplements, we say that a module M has the property (SE) (respectively, the property (SSE)) if, whenever M ( N, M has a supplement that is a direct summand of N (respectively, a strong supplement in N). We show that a ring R is a left and right artinian serial ring with Rad(R)2 = 0 if and only if every left R-module has the property (SSE). We prove that a commutative ring R is an artinian serial ring if and only if every left R-module has the property (SE).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.