Abstract

J. R. Isbell proved his famous zigzag theorem for semigroups using essentially topological methods in [Epimorphisms and dominions, in “Proceedings of the Conference on Categorical Algebra, La Jolla, 1965,” pp. 232–246]. Since then a number of authors have proved this result using a variety of different techniques. We present in this paper a description of the free product of a special amalgam of monoids using the “homological” techniques introduced by the author in [ Proc. London Math. Soc. (3) 52 (1986), 119–141] and from this derive a short proof of the zigzag theorem. This is the first proof which makes direct use of the amalgamated free product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.