Abstract
We study the free groups in varieties defined by an arbitrary set of identities in a well-known infinite independent system of identities in two variables constructed by S. I. Adian to solve the finite basis problem in group theory. We prove that the centralizer of any non-identity element in a relatively free group in any of the varieties under consideration is cyclic, and for every the set of all non-isomorphic free groups of rank in these varieties is of the cardinality of the continuum. All these groups have trivial centre, all their abelian subgroups are cyclic, and all their non-trivial normal subgroups are infinite. For any free group in any of these varieties, we also obtain a description of the automorphisms of the semigroup , answering a question posed by Plotkin in 2000. In particular, we prove that the automorphism group of any such is canonically embedded in the group .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.