Abstract

The purpose of this article is to study how the integrals of the Gaussian radial basis function can be employed to produce the coefficients of approximations under the radial basis function - finite difference solver. Here these coefficients are reported for a five-point stencil. Error equations are derived to demonstrate that the convergence rate is four for approximating the 1st and 2nd differentiations of a function. Then the coefficients are used in solving multi-dimensional option pricing problems, which are modeled as time-dependent variable-coefficients parabolic partial differential equations with non-smooth initial conditions. The numerical simulations support the applicability and usefulness of the presented method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.