Abstract
The width of a lattice L is the maximum number of pairwise noncomparable elements in L.It has been known for some time ([5] ; see also [4]) that there is just one subdirectly irreducible lattice of width twro, namely the five-element nonmodular lattice N5. It follows that every lattice of width two is in the variety of N5, and that every finitely generated lattice of width two is finite.Beginning a study of lattices of width three, W. Poguntke [6] showed that there are infinitely many finite simple lattices of width three. Further studies on width three lattices were made in [3], where it was asked whether every finitely generated simple lattice of width three is finite. In this paper we will show that, in fact, more is true:THEOREM 1.1. Every finitely generated subdirectly irreducible lattice of width three is finite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.