Abstract

An extension of the finite element method–flux corrected transport stabilization for hyperbolic problems in the context of partial differential–algebraic equations is proposed. Given a local extremum diminishing property of the spatial discretization, the positivity preservation of the one-step θ-scheme when applied to the time integration of the resulting differential–algebraic equation is shown, under a mild restriction on the time step size. As a crucial tool in the analysis, the Drazin inverse and the corresponding Drazin ordinary differential equation are explicitly derived. Numerical results are presented for non-constant and time-dependent boundary conditions in one space dimension and for a two-dimensional advection problem with a sinusoidal inflow boundary condition and the advection proceeding skew to the mesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.