Abstract

A few generalizations of a Poisson algebra to field theory canonically formulated in terms of the polymomentum variables are discussed. A graded Poisson bracket on differential forms and an ( n + l)-ary bracket on functions are considered. The Poisson bracket on differential forms gives rise to various generalizations of a Gerstenhaber algebra: the noncommutative (in the sense of Loday) and the higher-order (in the sense of the higher-order graded Leibniz rule). The ( n + l)-ary bracket fulfills the properties of the Nambu bracket including the “fundamental identity”, thus leading to the Nambu-Poisson algebra. We point out that in the field theory context the Nambu bracket with a properly defined covariant analogue of Hamilton's function determines a joint evolution of several dynamical variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.