Abstract
The Laplacian matrix and its pseudo-inverse for a strongly connected directed graph is fundamental in computing many properties of a directed graph. Examples include random-walk centrality and betweenness measures, average hitting and commute times, and other connectivity measures. These measures arise in the analysis of many social and computer networks. In this short paper, we show how a linear system involving the Laplacian may be solved in time linear in the number of edges, times a factor depending on the separability of the graph. This leads directly to the column-by-column computation of the entire Laplacian pseudo-inverse in time quadratic in the number of nodes, i.e., constant time per matrix entry. The approach is based on “off-the-shelf” iterative methods for which global linear convergence is guaranteed, without recourse to any matrix elimination algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.