Abstract

AbstractUnlike the value at risk, the expected shortfall is a coherent measure of risk. In this paper, we discuss estimation of the expected shortfall of a random variable Yt with special reference to the case when auxiliary information is available in the form of a set of predictors Xt. We consider three classes of estimators of the conditional expected shortfall of Yt given Xt: a class of fully non‐parametric estimators and two classes of analog estimators based, respectively, on the empirical conditional quantile function and the empirical conditional distribution function. We study their sampling properties by means of a set of Monte Carlo experiments and analyze their performance in an empirical application to financial data. Copyright © 2008 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.