Abstract

Discovering triangles in large graphs is a well-studied area, however, both external-memory performance of existing methods and our understanding of the complexity involved leave much room for improvement. To shed light on this problem, we first generalize the existing in-memory algorithms into a single framework of 18 triangle-search techniques. We then develop a novel external-memory approach, which we call Pruned Companion Files (PCF), that supports operation of all 18 algorithms, while significantly reducing I/O compared to the common methods in this area. After finding the best node-traversal order, we build an implementation around it using SIMD instructions for list intersection and PCF for I/O. This method runs 5-10 times faster than the best available implementation and exhibits orders of magnitude less I/O. In one of our graphs, the program finds 1 trillion triangles in 237 seconds using a desktop CPU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.