Abstract

A Gray code of size n is a cyclic sequence of all binary words of length n such that two consecutive words differ exactly in one position. We say that the Gray code is a distance code if the Hamming distance between words located at distance k from each other is equal to d. The distance property generalizes the familiar concepts of a locally balanced Gray code. We prove that there are no distance Gray codes with d = 1 for k > 1. Some examples of constructing distance Gray codes are given. For one infinite series of parameters, it is proved that there are no distance Gray codes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.