Abstract

In this paper we investigate asymptotic behavior of error of a discrete time hedging strategy in a fractional Black-Scholes model in the sense of Wick-Ito-Skorohod integration. The rate of convergence of the hedging error due to discrete-time trading when the true strategy is known for the trader, is investigated. The result provides new statistical tools to study and detect the effect of the long-memory and the Hurst parameter for the error of discrete time hedging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.