Abstract

Sensitivity coefficients from Monte Carlo neutron transport codes have uncertainties that can affect nuclear data adjustments with integral experiments. This paper presents an extended version of Generalized Linear Least Squares (GLLS), called xGLLS, that accounts for these uncertainties. With very large sensitivity uncertainties, xGLLS constrains the nuclear data adjustments so that the posterior biases and uncertainties are larger than with GLLS. However, for the range of sensitivity uncertainties realistically encountered, xGLLS does not produce adjustments different from GLLS. This indicates that sensitivity uncertainties are not important compared to experimental, modeling, methodological, and nuclear data uncertainties. To balance a simulation’s accuracy with its computational cost, we recommend stopping a simulation once the uncertainty of a calculated integral parameter, caused by modeling and methodologies and by the sensitivities, is an order of magnitude smaller than that caused by nuclear data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.