Abstract

We consider a Crank–Nicolson–Adams–Bashforth temporal discretization, together with a finite element spatial discretization, for efficiently computing solutions to approximate deconvolution models of incompressible flow in two dimensions. We prove a restriction on the timestep that will guarantee stability, and provide several numerical experiments that show the proposed method is very effective at finding accurate coarse mesh approximations for benchmark flow problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.