Abstract

We consider a configuration graph with N vertices. The degrees of the vertices are drawn independently from a discrete power-law distribution with positive parameter τ . They are equal to the number of each vertex’s numbered semiedges. The graph is constructed by joining all of the semiedges pairwise equiprobably to form edges. Research in the last years showed that configuration power-law random graphs with τ ∈ (1, 2) are deemed to be a good implementation of Internet topology. Such graphs could be used also for modeling forest fires as well as banking system defaults. But in these cases usually τ > 2. Parameter τ may depend on N and even be random. In the paper we consider configuration random graphs under the condition that the sum of vertex degrees is equal to n. Random graph dynamics as N → ∞ is assumed to take place in a random environment, where τ is a random variable following uniform distribution on the interval [a, b], 0 < a < b < ∞. We obtained the limit distributions of the maximum vertex degree and the number of vertices with a given degree as N, n → ∞.

Highlights

  • We consider a configuration graph with N vertices

  • The graph is constructed by joining all of the semiedges pairwise equiprobably to form edges

  • Research in the last years showed that configuration power-law random graphs with τ ∈ (1, 2) are deemed to be a good implementation of Internet topology

Read more

Summary

Институт прикладных математических исследований Карельского научного центра РАН

Рассматривается случайный конфигурационный граф с N вершинами, степени которых независимы и одинаково распределены по дискретному степенному закону с положительным параметром τ. В статье изучаются конфигурационные случайные графы при условии, что сумма степеней вершин равна n. ON CONDITIONAL CONFIGURATION GRAPHS WITH RANDOM DISTRIBUTION OF VERTEX DEGREES. Research in the last years showed that configuration power-law random graphs with τ ∈ (1, 2) are deemed to be a good implementation of Internet topology. Наблюдения показали [13], что конфигурационные графы с распределением (1) степеней вершин достаточно адекватно описывают сети, при этом в соответствующих моделях обычно τ ∈ (1, 2). В [7] впервые рассматривались условные конфигурационные графы при условии, что число ребер графа известно. В статье доказаны предельные теоремы для случайных величин ξ(N) и μr в условном конфигурационном графе, степени вершин которого имеют распределение (2), (3), а сумма степеней равна n, при различных соотношениях между стремящимися к бесконечности N и n. Далее приводятся вспомогательные утверждения (леммы 1–13), с помощью которых в конце статьи доказываются теоремы 1–5

Основные результаты
Вспомогательные утверждения
Рассмотрим разность
Доказательства теорем

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.