Abstract
Growing interest in magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, ∼μT fields) has been motivated by several advantages over its counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging schemes, reduced imaging artifacts from susceptibility variations within a sample, and reduced system cost and complexity. In addition, ULF NMR/MRI with superconducting quantum interference devices is compatible with simultaneous measurements of biomagnetic signals, a capability conventional systems cannot offer. Acquisition of MRI at ULF must, however, account for concomitant gradients that would otherwise result in severe image distortions. In this paper, we introduce the general theoretical framework that describes concomitant gradients, explain why such gradients are more problematic at low field, and present possible approaches to correct for these unavoidable gradients in the context of a non-slice-selective MRI protocol.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.