Abstract

AbstractThe primary characteristic of interval temporal logic is that intervals, rather than points, are taken as the primitive ontological entities. Their computational behaviour is generally bad, and several restrictions have been considered in order to define decidable and computationally affordable temporal logics based on intervals. In this paper we take inspiration from Golumbic and Shamir’s coarser interval algebras, which generalize the classical Allen’s Interval Algebra, in order to define two previously unknown variants of Halpern and Shoham’s logic (\(\mathrm{HS} \)). We prove that one of them (denoted here by \(\mathrm{HS_7} \)) is still generally undecidable, while the other one (\(\mathrm{HS_3} \)) becomes, perhaps surprisingly, PSpace-complete, at least in the finite case.KeywordsInterval Temporal LogicCoarse IntervalsSatisfiability ProblemInterval Algebra (IA)Finite CaseThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.