Abstract
This paper presents a new methodology to extract spectral information of radiated THz signals to enable a fully integrated broadband THz spectroscope in silicon. A classical down-conversion spectrum analysis architecture requires on-chip generation of LO signals covering GHz-THz frequencies to analyze an incident spectrum covering that range. This paper presents a method to exploit the interaction between the front-end antenna and the incident signal to extract spectral information eliminating the need for extremely wideband LO generation and the entire receiver architecture following the antenna. The central premise is that the incident THz signal excites a spectrum-dependent current distribution on the antenna surface and this work presents a method to measure and then estimate the incident spectrum from the impressed current distribution on an on-chip antenna. The chip is implemented in $0.13~\mu \text {m}$ SiGe BiCMOS technology and measures 2.6 mm $\times 1.9$ mm. Measurement results are presented for various incident spectra between 40–330 GHz. In addition, the paper presents a method for extracting time-domain information by exploiting the variable nonlinearities of the integrated detectors. By modifying a classical single-port antenna into a 2D multi-port scatterer, the paper presents a synthesizer-free THz spectroscope which consists of an integrated scatterer and multitude of low-power sensors capable of sub-wavelength measurement of near-field interactions which are exploited for spectral estimation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.