Abstract
Hierarchical Temporal Memory is a new machine learning algorithm intended to mimic the working principle of neocortex, part of the human brain, which is responsible for learning, classification, and making predictions. Although many works illustrate its effectiveness as a software algorithm, hardware design for HTM remains an open research problem. Hence, this work proposes an architecture for HTM Spatial Pooler and Temporal Memory with learning mechanism, which creates a single image for each class based on important and unimportant features of all images in the training set. In turn, the reduction in the number of templates within database reduces the memory requirements and increases the processing speed. Moreover, face recognition analysis indicates that for a large number of training images, the proposed design provides higher accuracy results (83.5\%) compared to only Spatial Pooler design presented in the previous works.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.