Abstract

Let $A$ be an $n$-element set. Let $\mathscr{L} ie_2(A)$ be the multilinear part of the free Lie algebra on $A$ with a pair of compatible Lie brackets, and $\mathscr{L} ie_2(A, i)$ the subspace of $\mathscr{L} ie_2(A)$ generated by all the monomials in $\mathscr{L} ie_2(A)$ with $i$ brackets of one type. The author and Dotsenko-Khoroshkin show that the dimension of $\mathscr{L} ie_2(A, i)$ is the size of $R_{A,i}$, the set of rooted trees on $A$ with $i$ decreasing edges. There are three families of bases known for $\mathscr{L} ie_2(A, i)$ the comb basis, the Lyndon basis, and the Liu-Lyndon basis. Recently, González D'León and Wachs, in their study of (co)homology of the poset of weighted partitions (which has close connection to $\mathscr{L} ie_2(A, i)$), asked whether there are nice bijections between $R_{A,i}$ and the comb basis or the Lyndon basis. We give a natural definition for " nice bijections " , and conjecture that there is a unique nice bijection between $R_{A,i}$ and the comb basis. We show the conjecture is true for the extreme cases where $i=0$, $n−1$. Soit $A$ un ensemble à $n$ éléments. Soit $\mathscr{L} ie_2(A)$ la partie multilinéaire de l'algèbre de Lie libre sur $A$ avec une paire de crochets de Lie compatibles et $\mathscr{L} ie_2(A, i)$ le sous-espace de$\mathscr{L} ie_2(A)$ généré par tous les monômes en $\mathscr{L} ie_2(A)$ avec $i$ supports d'un même type. L'auteur et Dotsenko-Khoroshkin montrent que la dimension de $\mathscr{L} ie_2(A, i)$ est la taille de la $R_{A,i}$, l'ensemble des arbres enracinés sur $A$ avec $i$ arêtes décroissantes. Il y a trois familles de bases connues pour $\mathscr{L} ie_2(A, i)$ : la base de peigne, la base Lyndon, et la base Liu-Lyndon. Récemment, Gonzalez, D' Léon et Wachs, dans leur étude de (co)-homologie de la poset des partitions pondérés, ont demandé si il y a des bijections jolies entre$R_{A,i}$, et la base de peigne ou la base Lyndon. Nous donnons une définition naturelle de "bijection jolie " , et un conjecture qu'il y a une seule bijection jolie entre $R_{A,i}$, et la base de peigne. Nous montrons que la conjecture est vraie pour les cas extrêmes: $i = 0$, et $n − 1$.

Highlights

  • 1.1 BackgroundLet A = {a1 < a2 < ⋯ < an} be an ordered set and k a field

  • Feigin considered the free Lie algebra on A equipped with two compatible Lie brackets [⋅, ⋅] and ⟨⋅, ⋅⟩, and where RA,i is the set of rooted trees on A with i decreasing edges

  • There are three families of bases known for L ie2(A, i) (and for Hn−3 (ˆ0, [n]i) ) summarized in [6] by Gonzalez D’Leon and Wachs in their study ofhomology of weighted partition poset

Read more

Summary

Background

In [2, 3], Dotsenko and Khoroshkin use the theory of operads to prove Feigin’s conjecture They obtain character formulas for the representation of the symmetric groups Sn and the SL2 group in L ie2(n). (1.1) is not derived directly in their work, it follows from their character formulas and a result of Drake [4] Another interesting property of L ie(n) is its close connection to the (co)homology of the partition lattice Πn. In [6], Gonzalez D’leon and Wachs extend various classical results of Πn to Πwn They establish a strong connection between cohomology of open intervals (ˆ0, [n]i) and 2v-colored binary trees, which give another proof for (1.3) and provide a way to construct bases for Hn−3 (ˆ0, [n]i) from bases for L ie2(n, i). They construct a basis for Hn−3 (ˆ0, [n]i) from RA,i

Questions and results
Rooted trees and the comb basis
Good-pair bijections
A good-pair bijection
An ordering on cutting paths

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.