Abstract
In this paper, a (3+1)-dimensional generalized variable-coefficients Kadomtsev–Petviashvili (gvcKP) equation is proposed, which describes many nonlinear phenomena in fluid dynamics and plasma physics. By a very natural way, the integrable constraint conditions on the variable coefficients are presented to investigate the integrabilities of the gvcKP equation. Based on the generalized Bell's polynomials, we succinctly obtain its bilinear representations, bilinear Bäcklund transformation and Lax pair, respectively. Furthermore, by virtue of the binary Bell polynomial form, the infinite conservation laws of the equation are found with explicit recursion formulas as well by using its Lax equations via algebraic and differential manipulation. In addition, by using the Hirota bilinear method, its N-soliton solutions are also obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.