Abstract

We introduce a class of Bayesian infinite mixture models first introduced by Lo (1984) to determine the credibility premium for a non-homogeneous insurance portfolio. The Bayesian infinite mixture models provide us with much flexibility in the specification of the claim distribution. We employ the sampling scheme based on a weighted Chinese restaurant process introduced in Lo et al. (1996) to estimate a Bayesian infinite mixture model from the claim data. The Bayesian sampling scheme also provides a systematic way to cluster the claim data. This can provide some insights into the risk characteristics of the policyholders. The estimated credibility premium from the Bayesian infinite mixture model can be written as a linear combination of the prior estimate and the sample mean of the claim data. Estimation results for the Bayesian mixture credibility premiums will be presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.