Abstract

This is an investigation of the connections between bases and weaker structures in Banach spaces and their duals. It is proved, e.g., thatX has a basis ifX* does, and that ifX has a basis, thenX* has a basis provided thatX* is separable and satisfies Grothendieck’s approximation property; analogous results are obtained concerning π-structures and finite dimensional Schauder decompositions. The basic results are then applied to show that every separableℒ p space has a basis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.