Abstract

For solving time-dependent one-dimensional spatial-fractional diffusion equations of variable coefficients, we establish a banded M-splitting iteration method applicable to compute approximate solutions for the corresponding discrete linear systems resulting from certain finite difference schemes at every temporal level, and demonstrate its asymptotic convergence without imposing any extra condition. Also, we provide a multistep variant for the banded M-splitting iteration method, and prove that the computed solutions of the discrete linear systems by employing this iteration method converge to the exact solutions of the spatial fractional diffusion equations. Numerical experiments show the accuracy and efficiency of the multistep banded M-splitting iteration method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.