Abstract
SUMMARY Triplicated traveltime curve has three arrivals at a given distance with the bowtie shape in the traveltime-offset curve. The existence of the triplication can cause a lot of problems such as several arrivals for the same wave type, anomalous amplitudes near caustics, anomalous behaviour of rays near caustics, which leads to the structure imaging deviation and redundant signal in the inversion of the model parameters. Hence, triplication prediction becomes necessary when the medium is known. The research of the triplication in transversely isotropic medium with a vertical symmetry axis (VTI) has been well investigated and it has become clear that, apart from the point singularity case, the triplicated traveltime only occurs for S wave. On contrary to the VTI case, the triplication behaviour in the orthorhombic (ORT) medium has not been well focused due to the model complexity. In this paper, we derive the second-order coefficients of the slowness surface for two S waves in the vicinity of three symmetry axes and define the elliptic form function to examine the existence of the on-axis triplication in ORT model. The existence of the on-axis triplication is found by the sign of the defined curvature coefficients. Three ORT models are defined in the numerical examples to analyse the behaviour of the on-axis triplication. The plots of the group velocity surface in the vicinity of three symmetry axes are shown for different ORT models where different shapes: convex or the saddle-shaped (concave along one direction and convex along with another) indicates the existence of the on-axis triplication. We also show the traveltime plots (associated with the group velocity surface) to illustrate the effect of the on-axis triplication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.