Abstract
In this paper, we find various analytic ( 1 + 3 ) D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.