Abstract
A reaction diffusion equation with a Caputo fractional derivative in time and with various boundary conditions is considered. Under some conditions on the initial data, we show that solutions may experience blow-up in a finite time. However, for realistic initial conditions, solutions are global in time. Moreover, the asymptotic behavior of bounded solutions will be analyzed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.