Abstract

The problem is considered of constructing a maximal set of lines, with no three in a pencil, in the finite projective geometry PG(3, q) of three dimensions over GF(q). (A pencil is the set of q+1 lines in a plane and passing through a point.) It is found that an orbit of lines of a Singer cycle of PG(3, q) gives a set of size q3 + q2 + q + 1 which is definitely maximal in the case of q odd. A (q3 + q2 + q + 1)-cap contained in the hyperbolic (or ‘Klein’) quadric of PG(5, q) also comes from the construction. (A k-cap is a set of k points with no three in a line.) This is generalized to give direct constructions of caps in quadrics in PG(5, q). For q odd and greater than 3 these appear to be the largest caps known in PG(5, q). In particular it is shown how to construct directly a large cap contained in the Klein quadric, given an ovoid skew to an elliptic quadric of PG(3, q). Sometimes the cap is also contained in an elliptic quadric of PG(5, q) and this leads to a set of q3 + q2 + q + 1 lines of PG(3,q2) contained in the non-singular Hermitian surface such that no three lines pass through a point. These constructions can often be applied to real and complex spaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.