Abstract
We re-examine a quadratically convergent method using divided differences of order one in order to approximate a locally unique solution of an equation in a Banach space setting [4, 5, 7]. Recently in [4, 5, 7], using Lipschitz conditions, and a Newton-Kantorovich type approach, we provided a local as well as a semilocal convergence analysis for this method which compares favorably to other methods using two function evaluations such as the Steffensen’s method [1, 3, 13]. Here, we provide an analysis of this method under the gamma condition [6, 7, 19, 20]. In particular, we also show the quadratic convergence of this method. Numerical examples further validating the theoretical results are also provided.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.